In this section, we will download the same data using TCGAbiolinks, but instead of doing it programmatically we will use TCGAbiolinksGUI (Silva et al. 2017).
First we will launch the TCGAbiolinksGUI.
library(TCGAbiolinksGUI)
TCGAbiolinksGUI()
After launching the GUI select the GDC Data/Get GDC data/Molecular data
.
Fill the search fields with the same information below and click on Visualize Data
. If you select Filter using clinical data
under the clinical filter we will also plot the clinical information.
A plot with the summary of the data will be shown.
Also, if you want more details you can also open the GDC search results: Results
section.
After the query is completed, you will be able to download the data and convert it to an R object in the Download & Prepare
section.
If successful it will give you a message where the data was saved.
## Visualizing the Summarized Experiment
To visualize the SummarizedExperiment object select GDC Data/Manage SummarizedExperiment
:
And click on Select Summarized Experiment file
.
Select the file downloaded from GDC.
You can access sample metadata
the assay data
or the features metadata
Again, fill the search fields with the same information below and click on Visualize Data
. If you select Filter using clinical data
under the clinical filter we will also plot the clinical information.
A plot with the summary of the data will be shown.
After the query is completed, you will be able to download the data and convert it to an R object in the Download & Prepare
section.
If successful it will give you a message where the data was saved.
sessionInfo()
## R version 3.4.1 (2017-06-30)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.5
##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] Bioc2017.TCGAbiolinks.ELMER_0.0.0.9000
## [2] BiocInstaller_1.26.0
## [3] ELMER_2.0.1
## [4] TCGAbiolinks_2.5.6
## [5] dplyr_0.7.2
## [6] SummarizedExperiment_1.6.3
## [7] DelayedArray_0.2.7
## [8] matrixStats_0.52.2
## [9] Biobase_2.36.2
## [10] GenomicRanges_1.28.4
## [11] GenomeInfoDb_1.12.2
## [12] IRanges_2.10.2
## [13] S4Vectors_0.14.3
## [14] BiocGenerics_0.22.0
## [15] bindrcpp_0.2
## [16] MultiAssayExperiment_1.2.1
## [17] DT_0.2
## [18] ELMER.data_2.0.1
##
## loaded via a namespace (and not attached):
## [1] rtracklayer_1.36.4 ggthemes_3.4.0
## [3] prabclus_2.2-6 R.methodsS3_1.7.1
## [5] tidyr_0.6.3 ggplot2_2.2.1
## [7] acepack_1.4.1 bit64_0.9-7
## [9] knitr_1.16 aroma.light_3.6.0
## [11] R.utils_2.5.0 data.table_1.10.4
## [13] rpart_4.1-11 hwriter_1.3.2
## [15] RCurl_1.95-4.8 AnnotationFilter_1.0.0
## [17] doParallel_1.0.10 GenomicFeatures_1.28.4
## [19] RSQLite_2.0 commonmark_1.2
## [21] bit_1.1-12 BiocStyle_2.4.0
## [23] xml2_1.1.1 httpuv_1.3.5
## [25] assertthat_0.2.0 viridis_0.4.0
## [27] hms_0.3 evaluate_0.10.1
## [29] DEoptimR_1.0-8 dendextend_1.5.2
## [31] km.ci_0.5-2 DBI_0.7
## [33] geneplotter_1.54.0 htmlwidgets_0.9
## [35] reshape_0.8.6 EDASeq_2.10.0
## [37] matlab_1.0.2 purrr_0.2.2.2
## [39] selectr_0.3-1 ggpubr_0.1.4
## [41] backports_1.1.0 trimcluster_0.1-2
## [43] annotate_1.54.0 biomaRt_2.32.1
## [45] ensembldb_2.0.3 withr_1.0.2
## [47] Gviz_1.20.0 BSgenome_1.44.0
## [49] robustbase_0.92-7 checkmate_1.8.3
## [51] GenomicAlignments_1.12.1 mclust_5.3
## [53] mnormt_1.5-5 cluster_2.0.6
## [55] lazyeval_0.2.0 genefilter_1.58.1
## [57] edgeR_3.18.1 pkgconfig_2.0.1
## [59] labeling_0.3 nlme_3.1-131
## [61] ProtGenerics_1.8.0 nnet_7.3-12
## [63] devtools_1.13.2 bindr_0.1
## [65] rlang_0.1.1 diptest_0.75-7
## [67] downloader_0.4 AnnotationHub_2.8.2
## [69] dichromat_2.0-0 rprojroot_1.2
## [71] Matrix_1.2-10 KMsurv_0.1-5
## [73] zoo_1.8-0 base64enc_0.1-3
## [75] whisker_0.3-2 GlobalOptions_0.0.12
## [77] viridisLite_0.2.0 rjson_0.2.15
## [79] bitops_1.0-6 shinydashboard_0.6.1
## [81] R.oo_1.21.0 ConsensusClusterPlus_1.40.0
## [83] Biostrings_2.44.1 blob_1.1.0
## [85] shape_1.4.2 stringr_1.2.0
## [87] ShortRead_1.34.0 readr_1.1.1
## [89] scales_0.4.1 memoise_1.1.0
## [91] magrittr_1.5 plyr_1.8.4
## [93] zlibbioc_1.22.0 compiler_3.4.1
## [95] RColorBrewer_1.1-2 Rsamtools_1.28.0
## [97] XVector_0.16.0 htmlTable_1.9
## [99] Formula_1.2-2 MASS_7.3-47
## [101] stringi_1.1.5 yaml_2.1.14
## [103] locfit_1.5-9.1 latticeExtra_0.6-28
## [105] ggrepel_0.6.5 survMisc_0.5.4
## [107] grid_3.4.1 VariantAnnotation_1.22.3
## [109] tools_3.4.1 circlize_0.4.1
## [111] rstudioapi_0.6 foreach_1.4.3
## [113] foreign_0.8-69 git2r_0.18.0
## [115] gridExtra_2.2.1 digest_0.6.12
## [117] shiny_1.0.3 cmprsk_2.2-7
## [119] fpc_2.1-10 Rcpp_0.12.12
## [121] broom_0.4.2 httr_1.2.1
## [123] survminer_0.4.0 AnnotationDbi_1.38.1
## [125] biovizBase_1.24.0 ComplexHeatmap_1.14.0
## [127] psych_1.7.5 kernlab_0.9-25
## [129] colorspace_1.3-2 rvest_0.3.2
## [131] XML_3.98-1.9 splines_3.4.1
## [133] flexmix_2.3-14 plotly_4.7.0
## [135] xtable_1.8-2 jsonlite_1.5
## [137] UpSetR_1.3.3 modeltools_0.2-21
## [139] R6_2.2.2 Hmisc_4.0-3
## [141] htmltools_0.3.6 mime_0.5
## [143] glue_1.1.1 BiocParallel_1.10.1
## [145] DESeq_1.28.0 class_7.3-14
## [147] interactiveDisplayBase_1.14.0 codetools_0.2-15
## [149] mvtnorm_1.0-6 lattice_0.20-35
## [151] tibble_1.3.3 curl_2.7
## [153] survival_2.41-3 limma_3.32.3
## [155] roxygen2_6.0.1 rmarkdown_1.6
## [157] munsell_0.4.3 GetoptLong_0.1.6
## [159] GenomeInfoDbData_0.99.0 iterators_1.0.8
## [161] reshape2_1.4.2 gtable_0.2.0
Silva, Tiago C., Antonio Colaprico, Catharina Olsen, Gianluca Bontempi, Michele Ceccarelli, Benjamin P. Berman, and Houtan Noushmehr. 2017. “TCGAbiolinksGUI: A Graphical User Interface to Analyze Cancer Molecular and Clinical Data.” bioRxiv. Cold Spring Harbor Labs Journals. doi:10.1101/147496.